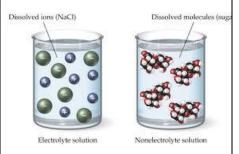

Chapter 4 Summary Notes	
Main Concepts	Explanations
<i>Reactions:</i> To be able to successfully write reactions, you will need to know the	Synthesis Reactions:
following: Solubility Rules, Nomenclature Types of Reactions (explained later in	
this worksheet), How to write net ionic equations MUST KNOW For AP	
Chemistry reaction prediction:	$ \longrightarrow $
	$A + B \rightarrow AB$
1. Always write balanced net ionic equations (meaning dissociate soluble	
compounds (based on solubility rules),	Figure 2.3
2. Metal are insoluble and are atomic, written as (s) in these equations. Ex. $Mg_{(s)}$	
3. Molecular compounds such as gases (CO_2 , H_2S Etc.) are written as (g) and will	
not dissociate into ions.	$0 > 8 \rightarrow \forall \forall$
4. Water is written as (1) and does not dissociate.	
5. Ionic compounds may or may not dissociate depending on solubility rules. Ex.	$3 Mg + N_2 \longrightarrow Mg_3N_2$
PbSO₄ insoluble and NaNO₃ soluble.Even a soluble ionic compound may NOT dissociate if it is in solid form	
6. Even a soluble ionic compound may NOT dissociate if it is in solid form (meaning no water present to actually dissociate the ions.)	» ۲
7. Weak acids and bases partly dissociate or ionize and are written with a	Decomposition
reversible arrow.	
8. Remember PSHOFBrINCl. Phosphorus occurs as P4, Sulfer as S8 and rest as	$2H_{0}$ \rightarrow $2H_{0}$ $+$ 0_{1}
diatomic.	hydrogen peroxide water oxyg
9. While we are reviewing, remember the difference between Zn and Zn^{2+} and Cl_2	Single Replacement
and 2 Cl	$A + BC \rightarrow B + AC$
10. Strong acids (HCl, HBr, HI, HNO ₃ , H ₂ SO ₄ (first dissociation only!), HClO ₄ and	Ma
HClO ₃) and strong bases (Group 1 alkali metal hydroxide and Ca, Ba, Sr	
hydroxides from group 2) dissociate in aq. Solutions. Weak acids and bases are	
not dissociated in net ionic equations.	Ag
Solubility Rules Always soluble: alkalies, NH_4^+ , NO_3^- , $C_2H_3O_2^-$	
Types of Reactions: Double displacement. Precipitation, neutralization, gas forming.	
H_2CO_3 in water = H_2O & CO_2	$A + BC \rightarrow B + AC$
Single displacement or redox replacement: (metals displace metals and nonmetals displace	Mg
nonmetals)	Ag
<i>Combination or synthesis</i> = two reactants result in a single product · Metal oxide + water → metallic hydroxide (base)	
• Nonmetal oxide + water \rightarrow nonbinary acid	
• Metal oxide + nonmetal oxide \rightarrow salt	—
<i>Decomposition</i> = one reactant becomes several products	
• Metallic hydroxide \rightarrow metal oxide + water	Combustion Reactions:
· Acid \rightarrow nonmetal oxide + water	
· Salt \rightarrow metal oxide + nonmetal oxide	
· Metallic chlorates \rightarrow metallic chlorides + oxygen	
· Electrolysis decompose compound into elements (water in dilute acids or solutions of	$CH_4 + 20_2> CO_2 + 2H_2O_2$
dilute acids)	Methane Oxygen Carbon Dioxide Water
• Hydrogen peroxide \rightarrow water + oxygen	,,,
• Metallic carbonates> metal oxides + carbon dioxide	Combustion Reaction
• Ammonium carbonate \rightarrow ammonia, water and carbon dioxide.	
 Hydrolysis = compound reacting with water. Watch for soluble salts that contain anions of weak acid the anion is a conjugate base and 	
cations of weak bases that are conjugate acids.	
Reactions of coordinate compounds and complex	
• Complex formation by adding excess source of ligand to transitional metal of highly	
charged metal ion such	
as $Al_{3+}Al = 4$ ligands others 2X ox #	

Gupta 2014


AP Chemistry

Ex. How many mL of a 3M NaOH solution are required to completely neutralize 20.0 mL of 1.5M H₂SO₄? (Start by writing a balanced equation!) Ans. 20.0 mL

Ex. How many g of NaOH is required to completely react with 100. mL of 1M HCl?

